

TAKE MEASUREMENTS CAREFULLY AND YOU'LL SPARE YOUR METER AND YOURSELF, SOME PAIN

Nearly every electrical engineer has a hand held Multimeter. We sometimes take them for granted, until we damage them or "burn them out". If you incorrectly connect your DMM to a circuit or have the DMM on wrong setting, you damage the meter and possibly hurt yourself. You can also get into trouble I f you try to measure the voltage across a charged capacitor.
DMM users frequently burn their meters by trying to measure current the
same way as they measure voltage, Remember, you measure voltage across a circuit, and current through a circuit. When you use the current input, your DMM becomes a low impedance circuit element. If you accidentally connect this low impedance path across your circuit, you'll effectively short-circuit it. You can, therefore send high current through your meter and severely damage it. Unless the meter has a fused input, you can even get an explosion or fire.
Even if you correctly insert your DMM into the circuit, you can still damage your meter. Don't try to measure current in excess of your meter's capacity. Handheld DMMs usually have a maximum current rating of 10A or 20A
If you are measuring current in industrial environment, you can easily exceed those ratings. The best way to avoid damage is to use a clamp meter or to connect a clamp attachment to your DMM To prevent excess current from flowing through your meter, always disconnect the test leads from the circuit under test whenever you change DMM functions, Set your meter to the correct function, say current and its highest range for the setting, say 20A.
Next, connect the test leads before you apply power to the circuit. To be safe, start by setting your meter to its highest range first.

TABLE OF CONTENTS

TITLE

PAGE
\qquad
2.INTERNATIONAL ELECTRICAL SYMBOLS .3
\qquad
4.SPECIFICATIONS . .5
\qquad
ELECTRICAL SPECIFICATIONS7
5.PRODUCT DESCRIPTION 16
6.OPERATION. 19
7.MAINTENANCE. 32
8.TEST CERTIFICATE 35
9.WARRANTY. 36

Per IEC61010-1 2nd Ed. (2001) Measurement Category Measurement Category IV (CAT IV) is for measurements performed at the source of the low-voltage installation. Examples are electricity meters and measurements on primary overcurrent protection devices and ripple control units.

Measurement Category III (CAT III) is for measurements performed in the building installation. Examples are measurements on distribution boards, circuit- breakers, wiring, including cables, bus-bars, junction boxes, switches, socketoutlets in the fixed installation, and equipment for industrial use and some other equipment, for example, stationary motors permanent connection to the fixed installation.

Measurement Category II (CAT II) is for measurements performed on circuits directly connected to the low voltage installation. Examples are measurements on household appliances, portable tools and similar equipment.

WARNING

To reduce the risk of fire or electric shock, do not expose this product to rain or moisture. To avoid electrical shock hazard, observe the proper safety precautions when working with voltages above 60 VDC or 30 VAC rms. These voltage levels pose a potential shock hazard to the user. Do not touch test lead tips or the circuit being tested while power is applied to the circuit being measured. Keep your fingers behind the finger guards of the test leads during measurement. Inspect test leads, connectors, \& probes for damaged insulation or exposed metal before using the instrument. If any defects are found, replace them immediately.

KUSAMIMELD

Do not measure any current that exceeds the current rating of the protection fuse. Do not attempt a current measurement to any circuit where the open circuit voltage is above the protection fuse voltage rating. Suspected open circuit voltage should be checked with voltage functions. Never attempt a voltage measurement with the test lead inserted into the $\mu \mathrm{A} / \mathrm{mA}$ or A input jack. Only replace the blown fuse with the proper rating as specified in this manual.

CAUTION

Disconnect the test leads from the test points before changing functions. Always set the instrument to the highest range and work downward for an unknown value when using manual ranging mode.

INTERNATIONAL ELECTRICAL SYMBOLS

1	Caution ! Refer to the explanation in this Manual
令	Caution ! Risk of electric shock
$\stackrel{1}{\underline{1}}$	Earth (Ground)
\square	Double Insulation or Reinforced insulation
\square	Fuse
\sim	AC--Alternating Current
=--	DC--Direct Current

2) CENELEC DIRECTIVES

The instruments conform to CENELEC Low-voltage directive 2006/95/EC and Electromagnetic compatibility directive 2004 /108 / EC

KuSfMn-mect

SPECIAL FEATURES :

- Record MAX, MIN \& AVG readings
- Crest (Instantaneous Peak hold) MAX \& MIN reading
- Relative zero mode
- 500,000 counts stable DCV mode
- Paper-White Backlight display
- dBm readings
- \% 4-20mA loop current readings
- Data Hold
- BeepJack ${ }^{\text {TM }}$ Audible \& visible input warning
- T1-T2 differential temperature readings
- VFD, V \& Hz readings

SPECIFICATIONS

GENERAL SPECIFICATIONS :

- Display : 4-4/5 digits 50,000 counts fast mode. Selectable stable mode 5-4/5 digits 500,000 counts for DC Voltage, \& 5 digits 99,999 counts for Hz large Dual LCD display with white Backlight.
- Polarity : Automatic
- Update Rate :

4-4/5 digits fast mode : 5 per second nominal;
5-4/5 digits stable mode : 1.25 per second nominal.

- 41 Segments Bar graph : 60 per second max
- Operating Temperature : $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
- Relative Humidity : Maximum 80% R.H. for temperature upto $31^{\circ} \mathrm{C}$ decreasing linearly to 50% R.H. at $45^{\circ} \mathrm{C}$
- Pollution degree : 2
- Storage Temperature : $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C},<80 \%$ R.H. (With battery removed)
- Altitude : Operating below 2000 m
- Temperature Coefficient : nominal 0.15 x (specified accuracy) $/{ }^{\circ} \mathrm{C} @\left(0^{\circ} \mathrm{C} \sim 18^{\circ} \mathrm{C}\right.$ or $28^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$) or otherwise specified.
- Sensing : AC, AC+DC True RMS
- Safety : Double insulation per IEC/UL/EN61010-1Ed.3.0, IEC/UL/EN61010-2-030 Ed. 1.0, IEC/EN61010-2-033 Ed. 1.0, IEC/UL/EN61010-031 Ed. 1.1 \& CAN/CSAC22.2 No. 61010-1-12 Ed. 3.0 to CAT IV 1000 V AC \& DC .
- Terminals (to COM) Measurement Category :

$$
\text { V/A/ mA } \mu \mathrm{A} \text { : Category IV } 1000 \text { VAC \& VDC }
$$

- Overload Protection :
$\mu \mathrm{A} \& \mathrm{~mA}: 0.44 \mathrm{~A} / 1000 \mathrm{~V}$, IR 10kA or better, F fuse
A : 11A/1000V, IR 20kA or better, F fuse
V : 1100V DC / AC rms
mV, Ω \& Others : 1000V DC / AC rms
- Transient protection : 12kV (1.2/50 NS surge)
- E.M.C. : Meets EN61326-1:2006 (EN55022, EN61000-3-2,

EN61000-3-3, EN61000-4-2, EN61000-4-3,
EN61000-4-4, EN61000-4-5, EN61000-4-6,
EN61000-4-8, EN61000-4-11)
In an RF field of $3 \mathrm{~V} / \mathrm{m}$:
Capacitance function is not specified
Other function ranges :
Total Accuracy $=$ Specified Accuracy +1000 digits
Performance above $3 \mathrm{~V} / \mathrm{m}$ is not specified.

- Power Supply : Single 9V Alkaline battery.
- Power Consumption : 6.5 mA typical; 8 mA for VFD ranges.
- Low battery : Below approx. 7V
- APO Timing : Idle for 17 minutes
- APO Consumption : $70 \mu \mathrm{~A}$ typical.
- Dimension : 208(L) x 103(W) x 64.5(H) mm with holster
- Weight : 635gm with holster.
- Accessories : Test leads (pair), holster, battery installed, User's Manual, Bkp60 banana plug K-type Thermocouple x 1 .
- Optional Accessories : BU-86X PC interface kit, Bkb32 banana pins to K-type socket plug adapter.

$\text { Еב KUSFII-MECD }{ }^{\circledR}$					
ELECTRICAL SPECIFICATIONS :					
Accuracy is \pm (\% reading digits + number of digits) or otherwise specified, at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ \& less than 75% relative humidity. True					
RMS Voltage \& Current accuracies are specified from 5 \% to 100 \% of range or otherwise specified. Maximum Crest Factor					
$<2.1: 1$ at full scale $\&<4.2: 1$ at half scale, and with frequency components within the specified frequency bandwidth for nonsinusoidal waveforms.					
DC VOLTAGE					
Range		Resol	Iution	Accu	racy
500.00 mV		1μ		\pm (0.02\%rdg	$\mathrm{g}+2 \mathrm{dgts})$
5.0000 V		100	$\mu \mathrm{V}$	$\pm(0.02 \% \mathrm{r}$	$\mathrm{g}+2 \mathrm{dgts})$
50.000 V		1 m	mV	$\pm(0.03 \%$ r	+ 2dgts)
500.00 V		10 m	mV	$\pm(0.04 \% \mathrm{rd}$	g + 2dgts)
1000.0 V		100 m	mV	$\pm(0.15 \% \mathrm{r}$	+ 2dgts)
Input Impedance : $10 \mathrm{M} \Omega, 60 \mathrm{pF}$ nominal (80 pF nominal for 500 mV range)					
DC CURRENT					
Range	Res	lution		uracy	Burden Voltage
$500.00 \mu \mathrm{~A}$	10	nA	$\pm(0.1$	dg+20dgts)	$0.15 \mathrm{mV} / \mu \mathrm{A}$
$5000.0 \mu \mathrm{~A}$	100	nA	$\pm(0.1$	+20dgts)	$0.15 \mathrm{mV} / \mu \mathrm{A}$
50.000 mA	1	$\mu \mathrm{A}$	$\pm(0.1$	dg+20dgts)	$3.3 \mathrm{mV} / \mathrm{mA}$
500.00 mA	10	$\mu \mathrm{A}$	$\pm(0.1$	g+30dgts)	$3.3 \mathrm{mV} / \mathrm{mA}$
5.0000 A	100	$\mu \mathrm{A}$	$\pm(0.5$	g+20dgts)	$45 \mathrm{mV} / \mathrm{A}$
10.000 A*		mA	$\pm(0.5$	g+20dgts)	$45 \mathrm{mV} / \mathrm{A}$
*10A continuous, $>10 \mathrm{~A}$ to 20 A for 30 second max with 5 minutes cool down interval					
07					

	KIF	$\mathrm{Im-mECO}^{\circledR}$
AC VOLTAGE		
Range	Resolution	Accuracy *
$\mathbf{2 0 H z} \sim 45 \mathrm{~Hz}$		
500.00 mV	$10 \mu \mathrm{~V}$	$\pm(1.2 \% \mathrm{rdg}+40 \mathrm{dgts})$
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(1.2 \% \mathrm{rdg}+40 \mathrm{dgts})$
50.000 V	1 mV	\pm (1.2\%rdg + 40dgts)
500.00 V	10 mV	Unspec'd
1000.0 V	100 mV	Unspec'd
$45 \mathrm{~Hz} \sim 300 \mathrm{~Hz}$		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (0.3\%rdg + 20dgts)
5.0000 V	$100 \mu \mathrm{~V}$	\pm (0.4\%rdg + 30dgts)
50.000 V	1 mV	$\pm(0.4 \% \mathrm{rdg}+30 \mathrm{dgts})$
500.00 V	10 mV	$\pm(0.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
1000.0 V	100 mV	$\pm(0.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
300Hz ~ 5kHz		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (0.3\%rdg + 20dgts)
5.0000 V	$100 \mu \mathrm{~V}$	\pm (0.4\%rdg + 40dgts)
50.000 V	1 mV	$\pm(0.4 \% \mathrm{rdg}+40 \mathrm{dgts})$
500.00 V	10 mV	$\pm(0.4 \% \mathrm{rdg}+40 \mathrm{dgts})$
1000.0 V	100 mV	$\pm(0.8 \% \mathrm{rdg}+40 \mathrm{dgts})^{* *}$
5kHz ~ 20kHz		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (0.5\%rdg + 30dgts)
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(0.7 \% \mathrm{rdg}+40 \mathrm{dgts})$
50.000 V	1 mV	$\pm(0.7 \% \mathrm{rdg}+40 \mathrm{dgts})$
500.00 V	10 mV	\pm (0.5\%rdg + 40dgts)
1000.0 V	100 mV	Unspec'd

$\overline{\# \text { KUSFIIT-MECD }}{ }^{\circledR}$		
Range	Resolution	Accuracy *
20kHz ~ 100kHz		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (2.5\%rdg + 40dgts)
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(4.0 \%$ rdg + 40dgts)***
50.000 V	1 mV	$\pm(4.0 \%$ rdg + 40dgts)***
500.00 V	10 mV	Unspec'd
1000.0 V	100 mV	Unspec'd
* From 5% to 10% of range : Specified accuracy +80 dgts ** Specified bandwidth $300 \mathrm{~Hz} \sim 1 \mathrm{kHz}$ *** From 5% to 10% of range : Specified accuracy +180 dgts From 10% to 15% of range : Specified accuracy +100 dgts		
Input Impedance: $10 \mathrm{M} \Omega, 60 \mathrm{pF}$ nominal (80pF nominal for 500 mV range) Residu 50 digits with test leads shorted.		
$D C^{A C} \& A C+D C^{A C} \text { VOLTAGE }$		
Range	Resolution	Accuracy *
$20 \mathrm{~Hz} \sim 45 \mathrm{~Hz}$		
500.00 mV	$10 \mu \mathrm{~V}$	$\pm(1.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
5.0000 V	$100 \mu \mathrm{~V}$	\pm (1.5\%rdg+40dgts)
50.000 V	1 mV	\pm (1.5\%rdg+40dgts)
500.00 V	10 mV	Unspec'd
1000.0 V	100 mV	Unspec'd
DC, $45 \mathrm{~Hz} \sim 300 \mathrm{~Hz}$		
500.00 mV	$10 \mu \mathrm{~V}$	$\pm(0.45 \% \mathrm{rdg}+40 \mathrm{dgts})$
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(0.7 \% \mathrm{rdg}+80 \mathrm{dgts})$
50.000 V	1 mV	$\pm(0.7 \% \mathrm{rdg}+80 \mathrm{dgts})$
500.00 V	10 mV	$\pm(0.7 \% \mathrm{rdg}+40 \mathrm{dgts})$
1000.0 V	100 mV	$\pm(0.7 \% \mathrm{rdg}+40 \mathrm{dgts})$
		10

" KUSiMI-IIECO ${ }^{\circledR}$		
Range	Resolution	Accuracy *
300Hz ~ 5kHz		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (0.8\%rdg + 40dgts)
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(0.8 \% \mathrm{rdg}+40 \mathrm{dgts})$
50.000 V	1 mV	\pm (0.8\%rdg + 40dgts)
500.00 V	10 mV	$\pm(0.8 \% \mathrm{rdg}+40 \mathrm{dgts})$
1000.0 V	100 mV	$\pm\left(1.0 \% \mathrm{rdg}+40 \mathrm{dgts}{ }^{* *}\right)$
5kHz ~ 20kHz		
500.00 mV	$10 \mu \mathrm{~V}$	\pm (1.0\%rdg + 40dgts)
5.0000 V	$100 \mu \mathrm{~V}$	$\pm(1.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
50.000 V	1 mV	$\pm(1.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
500.00 V	10 mV	$\pm(1.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
1000.0 V	100 mV	Unspec'd
20kHz ~ 40kHz		
500.00 mV	$10 \mu \mathrm{~V}$	$\pm(3.5 \% \mathrm{rdg}+40 \mathrm{dgts})$
5.0000 V	$100 \mu \mathrm{~V}$	$\pm\left(4.0 \%\right.$ rdg + 40dgts) ${ }^{* * *}$
50.000 V	1 mV	$\pm(4.0 \% \mathrm{rdg}+40 \mathrm{dgts})^{* * *}$
500.00 V	10 mV	Unspec'd
1000.0 V	100 mV	Unspec'd

* From 5\% to 10\% of range : Specified accuracy + 80 dgts ** Specified bandwidth $300 \mathrm{~Hz} \sim 1 \mathrm{kHz}$
*** From 5% to 10% of range : Specified accuracy +180 dgts From 10\% to 15% of range : Specified accuracy +100 dgts Input Impedance : $10 \mathrm{M} \Omega, 60 \mathrm{pF}$ nominal
(80 pF nominal for 500 mV range)
Residual reading less than 50 digits with test leads shorted.

KUSAIIT-IIEC0 $^{\circledR}$			
CAPACITANCE			
Range	Resol	ution	Accuracy *
50.00 nF	10	pF	$\pm(0.8 \% \mathrm{rdg}+3 \mathrm{dgts})$
500.0 nF	100	pF	$\pm(0.8 \% \mathrm{rdg}+3 \mathrm{dgts})$
$5.000 \mu \mathrm{~F}$	1	nF	$\pm(1.5 \% \mathrm{rdg}+3 \mathrm{dgts})$
$50.00 \mu \mathrm{~F}$	10	nF	$\pm(2.5 \%$ rdg + 3dgts)
$500.0 \mu \mathrm{~F}^{* *}$	100	nF	$\pm(3.5 \% \mathrm{rdg}+5 \mathrm{dgts})$
$5.000 \mathrm{mF}^{* *}$	1	$\mu \mathrm{F}$	$\pm(5.0 \%$ rdg + 5dgts)
$25.00 \mathrm{mF}^{* *}$	10	$\mu \mathrm{F}$	$\pm(6.5 \% \mathrm{rdg}+5 \mathrm{dgts})$

*Accuracies with film capaitor or better
**In manual-ranging mode, measurements not specified below $45.0 \mu \mathrm{~F} / 0.450 \mathrm{mF} / 4.50 \mathrm{mF}$ (450 counts) for $500.0 \mu \mathrm{~F} / 5.000 \mathrm{mF}$ 25.00 mF ranges respectively

DC LOOP CURRENT \%4~20mA
4mA : 0\% (zero) 20mA : 100\% (span)
Resolution: 0.01\% Accuracy : $\pm 25 \mathrm{~d}$

Hz LOGIC LEVEL FREQUENCY

Range	Accuracy
$5.000 \mathrm{~Hz} \sim 1.0000 \mathrm{MHz}$	$0.002 \%+4 \mathrm{~d}$

Sensitivity: 2.5 Vp square wave
T1-T2 DUAL TYPE-K TEMPERATURE

Range	Accuracy ${ }^{*}$
$-50.0^{\circ} \mathrm{C}$ to $1000.0^{\circ} \mathrm{C}$	$0.3 \%+1.5^{\circ} \mathrm{C}$
$-58.0^{\circ} \mathrm{F}$ to $1832.0^{\circ} \mathrm{F}$	$0.3 \%+3.0^{\circ} \mathrm{F}$

* Thermocouple range \& accuracy not included Supplied thermocouple suitable for measurement upto $250^{\circ} \mathrm{C}$.

KUS:M-IIE[0			
AC, DC ${ }^{\text {AC }}$ \& AC+DC ${ }^{\text {AC }}$ CURRENT			
Range	Resolution	Accuracy	Burden Voltage
DC, $50 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$			
$500.00 \mu \mathrm{~A}$	10 nA	$\pm(0.5 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
$5000.0 \mu \mathrm{~A}$	100 nA	$\pm(0.5 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
50.000 mA	$1 \quad \mu \mathrm{~A}$	$\pm(0.5 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
500.00 mA	$10 \quad \mu \mathrm{~A}$	$\pm(0.5 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
5.0000 A	$100 \mu \mathrm{~A}$	$\pm(0.5 \%+50 \mathrm{~d})$	$45 \mathrm{mV} / \mathrm{A}$
10.000 A*	1 mA	$\pm(0.5 \%+50 \mathrm{~d})$	$45 \mathrm{mV} / \mathrm{A}$
40Hz ~ 1 kHz			
$500.00 \mu \mathrm{~A}$	10 nA	$\pm(0.7 \%+50 \mathrm{~d}$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
$5000.0 \mu \mathrm{~A}$	100 nA	$\pm(0.7 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
50.000 mA	$1 \quad \mu \mathrm{~A}$	$\pm(0.7 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
500.00 mA	$10 \quad \mu \mathrm{~A}$	$\pm(0.7 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
5.0000 A	$100 \mu \mathrm{~A}$	$\pm(0.7 \%+50 \mathrm{~d})$	$45 \mathrm{mV} / \mathrm{A}$
10.000 A*	1 mA	$\pm(0.7 \%+50 \mathrm{~d})$	$45 \mathrm{mV} / \mathrm{A}$
1kHz ~ 20kHz			
$500.00 \mu \mathrm{~A}$	10 nA	$\pm(2.0 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
$5000.0 \mu \mathrm{~A}$	100 nA	$\pm(2.0 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
50.000 mA	$1 \quad \mu \mathrm{~A}$	$\pm(2.0 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
500.00 mA	$10 \quad \mu \mathrm{~A}$	$\pm(2.0 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
5.0000 A	$100 \mu \mathrm{~A}$	Unspec'd	$45 \mathrm{mV} / \mathrm{A}$
10.000 A*	1 mA	Unspec'd	$45 \mathrm{mV} / \mathrm{A}$
20kHz ~ 100kHz			
$500.00 \mu \mathrm{~A}$	10 nA	$\pm(5.0 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
$5000.0 \mu \mathrm{~A}$	100 nA	$\pm(5.0 \%+50 \mathrm{~d})$	$0.15 \mathrm{mV} / \mu \mathrm{A}$
50.000 mA	$1 \quad \mu \mathrm{~A}$	$\pm(5.0 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
500.00 mA	$10 \quad \mu \mathrm{~A}$	$\pm(5.0 \%+50 \mathrm{~d})$	$3.3 \mathrm{mV} / \mathrm{mA}$
5.0000 A	$100 \mu \mathrm{~A}$	Unspec'd	$45 \mathrm{mV} / \mathrm{A}$
10.000 A*	1 mA	Unspec'd	$45 \mathrm{mV} / \mathrm{A}$
*10A continuous, >10A to 20A for 30 second max with 5 minutes cool down interval -14			

KUSAII-IIEC0 ${ }^{\text {® }}$			
$\sim \mathrm{Hz}$ LINE LEVEL FREQUENCY			
AC Function Range		$\begin{aligned} & \text { ivity } \\ & \text { रMS) } \end{aligned}$	Range
500 mV	100	mV	$10 \mathrm{~Hz} \sim 200 \mathrm{kHz}$
$5 \quad \mathrm{~V}$	0.5	V	$10 \mathrm{~Hz} \sim 200 \mathrm{kHz}$
50 V	5	V	$10 \mathrm{~Hz} \sim 100 \mathrm{kHz}$
500 V	50	V	$10 \mathrm{~Hz} \sim 100 \mathrm{kHz}$
1000 V	500	V	$10 \mathrm{~Hz} \sim 10 \mathrm{kHz}$
VFD 5 V	0.5 V	V*	$10 \mathrm{~Hz} \sim 440 \mathrm{~Hz}$
VFD 50 V	5 V ~	V*	$10 \mathrm{~Hz} \sim 440 \mathrm{~Hz}$
VFD 500 V	50 V	-0V*	$10 \mathrm{~Hz} \sim 440 \mathrm{~Hz}$
$500 \mu \mathrm{~A}$	50	$\mu \mathrm{A}$	$10 \mathrm{~Hz} \sim 10 \mathrm{kHz}$
$5000 \mu \mathrm{~A}$	500	$\mu \mathrm{A}$	$10 \mathrm{~Hz} \sim 10 \mathrm{kHz}$
50 mA		mA	$10 \mathrm{~Hz} \sim 10 \mathrm{kHz}$
500 mA	50	mA	$10 \mathrm{~Hz} \sim 10 \mathrm{kHz}$
5 A	1	A	$10 \mathrm{~Hz} \sim 3 \mathrm{kHz}$
10 A	10	A	$10 \mathrm{~Hz} \sim 3 \mathrm{kHz}$

Accuracy : 0.02\% + 4d
*VFD sensitivity linearly decreases from 10\% F.S.
@ 200 Hz to 40% F.S. 440 Hz
\%DUTY CYCLE

Range	Accuracy
$0.1 \% \sim 99.99 \%$	$3 \mathrm{~d} / \mathrm{kHz}+2 \mathrm{~d}$

Input Frequency : $5 \mathrm{~Hz}--500 \mathrm{kHz}$, 5V Logic Family

4) PRODUCT DESCRIPTION

1) $5-4 / 5$ digits 500000 counts dual displays
2) Push-buttons for special functions \& features
3) Selector to turn the Power On or Off and Select a function
4) Input Jack for 10A (20 A for 30 sec) current \& for T2(-)function
5) Common (Ground ref.) Input Jack for all functions EXCEPT T2 function
6) Input Jack for all functions EXCEPT current ($\mu \mathrm{A}, \mathrm{mA}, \mathrm{A}$) \& T2 functions
7) Input Jack for milli-amp, micro-amp \& T2(+) functions

Analog bar-graph

The analog bar graph provides a visual indication of measurement like a traditional analog meter needle. It is excellent in detecting faulty contacts, identifying potentiometer clicks, and indicating signal spikes during adjustments.

Average sensing RMS calibrated

RMS (Root-Mean-Square) is the term used to describe the effective or equivalent DC value of an AC signal. Most digital multimeters use average sensing RMS calibrated technique to measure RMS values of AC signals. This technique is to obtain the average value by rectifying and filtering the AC signal. The average value is then scaled upward (calibrated) to read the RMS value of a sine wave. In measuring pure sinusoidal waveform, this technique is fast, accurate and cost effective. In measuring non-sinusoidal waveforms, however, significant errors can be introduced because of different scaling factors relating average to RMS values.

AC True RMS

AC True RMS, normally refers as True RMS, identifies a DMM function that is AC coupled, and responds accurately only to the effective RMS AC component value regardless of the wave forms. However, DC component plays an important role in the distorted non-symmetrical waveforms, and will also be of interest sometimes.

DC + AC True RMS

DC + AC True RMS calculates both of the AC \& DC components given by the expression $\sqrt{D C^{2}+(A C r m s)^{2}} \quad$ when making measurements, and can respond accurately to the total effective RMS value regardless of the waveform. Distorted wave forms with the presence of DC components and harmonics may cause :

1) Overheated transformers, generators and motors to burn out faster than normal
2) Circuit breakers to trip prematurely
3) Fuses to blow
4) Neutrals to overheat due to the triplen harmonics present on the neutral
5) Bus bars and electrical panels to vibrate

AC-Bandwidth

AC-Bandwidth of a DMM is the range of frequencies over which AC measurements can be made within the specified accuracy. It is not the frequency measurement function, but is the frequency response of the AC functions. A DMM cannot accurately measure the $A C$ value with frequency spectrums fall beyond the AC-bandwidth of the DMM. Therefore, wide AC-bandwidth plays an important role in high performance DMMs. In reality, complex waveforms, noise and distorted wave forms contain much higher frequency spectrum than its fundamental.

Crest Factor

Crest Factor is the ratio of the Crest (instantaneous peak) value to the True RMS value, and is commonly used to define the dynamic range of a True RMS DMM. A pure sinusoidal waveform has a Crest Factor of 1.4. A badly distorted sinusoidal waveform normally has a much higher Crest Factor.

$\mathrm{ACmV}{ }^{+\mathrm{Hz}}, \mathrm{dBm}^{+\mathrm{Hz}}, \mathrm{Hz}^{+\mathrm{ACmv}}$ functions
Press the SELECT button momentarily to select the subject functions in sequence. Last selection will be saved as power up default for repeat measurement convenience.

Temperature Functions

Press SELECT button momentarily to toggle between ${ }^{\circ} \mathrm{C} \&{ }^{\circ} \mathrm{F}$ readings. Press T1-T2 (RANGE) button momentarily to select T1, T2, T1 ${ }^{\text {+T2 }}$ or T1-T2 ${ }^{\text {+T2 }}$ readings. Last selection will be saved as power up default for repeat measurement convenience.

Note : Be sure to insert the banana plug type-K temperature bead probe Bk60 with correct + - polarities. You can also use a plug adapter Bkb32 (Optional Purchase) with banana pins to type-K socket to adapt other standard type-K mini plug temperature probes.

KUSAMIM-mect

PC-COMM Computer Interface Capabilities
The instrument equips with an optical isolated interface port at the meter back for data communication. Optional purchase PC USB interface kit BU-86X is required to connect the meter to PC computers.

Abstract

KUSFMIM-MECD

\section*{MAX / MIN / AVG recording mode}

Press REC button momentarily to activate MAX / MIN / AVG recording mode. The LCD "R" \& "MAX MIN AVG" turn on. The meter beeps when new MAX (maximum) or MIN (minimum) reading is updated. AVG (Average) reading is calculated over time. Press the button momentarily to read the MAX, MIN and AVG readings in sequence. Press the button for 1 second or more to exit MAX / MIN / AVG recording mode.

\section*{* Note:}

When activated, nominal measurement speed and manual / autoranging selection remains, and Auto-Power-Off is disabled automatically. Main display readings are used for MAX/MIN Comparison and AVG calculation. Secondary display is the accompanied significant readings where available. In 500,000 count mode, lower resolution 50,000 count mode will be used instead.

\section*{1ms CREST capture mode}

Press CREST button momentarily to activate CREST (Instantaneous Peak-Hold) mode to capture voltage or current signal duration as short as 1 ms . It is available to main display $5000 \mu \mathrm{~A}, 500 \mathrm{~mA}, 10 \mathrm{~A}$ and voltage function ranges. The LCD "C" \& "MAX" turn on. The meter beeps when new MAX (maximum) or MIN (minium) reading is updated. Press the button momentarily to read the MAX, and MIN readings in sequence. Press the button for 1 second or more to exit CREST mode. Voltage manual / autoranging (up range) remains, and Auto-Power-Off is disabled automatically in this mode.

KU5RM-MECD

Backlighted display

Press SELECT button for 1 second or more to toggle the LCD backlight. The backlight will also be turned off automatically after 32 seconds to extend battery life.

500000 Count Mode

Press the $500000(\Delta)$ button for 1 second or more to toggle the 50000 / 500000 count mode. It is available to single display DC voltage function ranges. Measuring speed is reduced to 1.25 times per second.

Beep-Jack ${ }^{\text {TM }}$ Input Warning

The meter beeps as well as displays "InEr" to warn the user against possible damage to the meter due to improper connections to the $\mu \mathrm{A}, \mathrm{mA}$ or A input jacks when other function (like voltage function) is selected.

Hold

The hold feature freezes the display for later view. Press the HOLD button momentarily to toggle the hold feature.

\triangle Relative Zero mode

Press the Δ Button momentarily to toggle relative zero mode. Relative zero allows the user to offset the meter consecutive measurements with the displaying reading as the reference value in the main display. Practically all displaying readings in the main display can be set as relative reference value including MAX / MIN / AVG readings.

Manual or Auto-ranging

Press the RANGE button momentarily to select manual-ranging, and the meter will remain in the range it was in, the LCD AUTO turns off. Press the button momentarily again to step through the ranges. Press and hold the button for 1 second or more to resume auto-ranging.
Note : Manual ranging feature is not available in Hz function.

Set Beeper Off

Press the RANGE button while turning the meter on to temporarily disable the Beeper feature. Turn the rotary switch OFF and then back on to resume.

Auto-Power off (APO)

The Auto-Power-off (APO) mode turns the meter off automatically to extend battery life after approximately 17 minutes of no activities. Activities are specified as:

1) Rotary switch or push button operations, and 2) Significant measuring readings of above 512 counts or non-OL Ω readings. In other words, the meter will intelligently avoid entering the APO mode when it is under normal measurements. To wake up the meter from APO, press the SELECT, RANGE, RELATIVE or HOLD button momentarily or turn the rotary switch OFF and then back on. Always turn the rotary switch to the OFF position when the meter is not in use.

Disabling Auto-Power off

Press the SELECT button while turning the meter on to temporarily disable the Auto-Power-Off feature. Turn the rotary switch OFF and then back on to resume.

5) MAINTENANCE
 WARNING

To avoide electrical shock, disconnect the meter from any circuit, remove the test leads from the input jacks and turn OFF the meter before opening the case. Do not operate with open case. Install only the same type of fuse or equivalent.

Calibration

Accuracy is specified for a period of one year after calibration. Periodic calibration at intervals of one year is recommended to maintain meter accuracy.
If self-diagnostic message "rE-O" is being displayed while powering on, the meter is re-organizing internal parameters. Do not switch off the meter, and it will be back to normal measurement shortly. However, if self-diagnostic message "C_Er" is being displayed while powering on, some meter ranges might be largely out of specifications. To avoid misleading measurements, stop using the meter and send it for recalibration. Refer to the Warranty section for obtaining warranty or repairing service.

Cleaning and Storage

Periodically wipe the case with a damp cloth and mild detergent; do not use abrasives or solvents. If the meter is not to be used for periods of longer than 60 days, remove the battery and store it separately.

Trouble Shooting

If the instrument fails to operate, check battery, fuses, leads, etc., And replace as necessary. Double check operating procedure as described in this user's manual.

KUSAMIM-mect

If the instrument voltage-resistance input terminal has subjected to high voltage transient (caused by lightning or switching surge to the system) by accident or abnormal conditions of operation, the series fusible resistors will be blown off (become high impedance) like fuses to protect the user and the instrument. Most measuring functions through this terminal will then be open circuit. The series fusible resistors and the spark-gaps (or varistors) should then be replaced by qualified technician. Refer to the WARRANTY section for obtaining warranty or repairing service.

Battery and Fuse replacement

Battery use : Single 9V Alkaline battery.

33

Fuse use :

Fuse (Fs1) for $\mu \mathrm{AmA}$ current input :
0.44A/1000VAC \& VDC,

IR 10kA or better, F fuse;
Fuse (Fs2) for A current input :
11A/1000 VAC \& VDC,
IR 20kA or better, F fuse

Battery replacement :

Loosen the 2 screws from the battery access door of the case bottom. Lift the battery access door and thus the battery compartment up. Replace the battery. Re-fasten the screws.

Fuse replacement :

Loosen the 4 screws from the case bottom. Lift the end of the case bottom nearest the input jacks until it unsnaps from the case top. Replace the blown fuse(s). Replace the case bottom, and ensure that all the gaskets are properly seated and the two snaps on the case top (near the LCD side) are engaged. Re -fasten the screws.

TRMS DIGITAL MULTIMETER

This Test Certificate warrantees that the product has been inspected and tested in accordance with the published specifications.

The instrument has been calibrated by using equipment which has already been calibrated to standards traceable to national standards.

MODEL NO. KM 869

SERIAL NO. \qquad

DATE: \qquad

ISO 9001:2015
REGISTERED

KUSFIIT-IIECD

WARRANTY

Each "KUSAM-MECO" product is warranted to be free from defects in material and workmanship under normal use \& service. The warranty period is one year (12 months) and begins from the date of despatch of goods. In case any defect occurs in functioning of the instrument, under proper use, within the warranty period, the same will be rectified by us free of charges, provided the to and fro freight charges are borne by you.
This warranty extends only to the original buyer or end-user customer of a "KUSAM-MECO" authorized dealer.
This warranty does not apply for damaged Ic's, fuses, burnt PCB's, disposable batteries, carrying case, test leads, or to any product which in "KUSAM-MECO's" opinion, has been misused, altered, neglected, contaminated or damaged by accident or abnormal conditions of operation or handling.
"KUSAM-MECO" authorized dealer shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of "KUSAM-MECO". "KUSAM-MECO's" warranty obligation is limited, at option, free of charge repair, or replacement of a defective product which is returned to a "KUSAM-MECO" authorized service center within the warranty period.
THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. "KUSAM-MECO" SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROMANY CAUSE WHATSOEVER.
All transaction are subject to Mumbai Jurisdiction.

